

Exploiting Graphene Saturable Absorption

Dimitrios Chatzidimitriou*, Alexandros Pitilakis, Traianos Yioultsis, Emmanouil Kriezis

*dchatzid@auth.gr

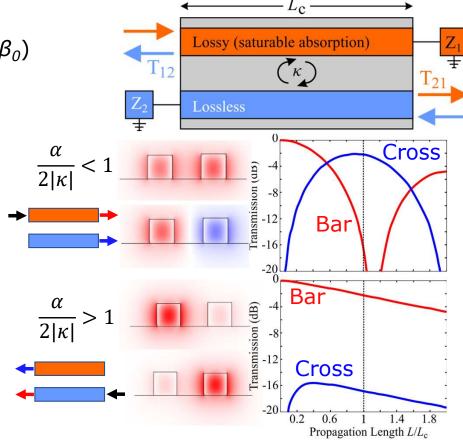
Introduction

- □ Demand for on chip integrated optical isolators
 - Magneto-optic components are bulky/expensive/hard to integrate.
- ✓ Non-linear non-reciprocity : Non-linearity + asymmetry breaks reciprocity.
 - Common implementation: Resonant components + Kerr effect.
 - * Resonators: high isolation but low bandwidth.
- ☐ This work: **Directional coupler** + **Saturable Absorption (SA).**
 - The asymmetry is enhanced by the Exceptional Point (EP) of the non-Hermitian (lossy) coupler.
 - ❖ Non-linearity (SA) is provided by **Graphene**.
 - ✓ Compatible integration with SOI platforms.
 - ✓ Relaxed **bandwidth** limiting factors.

Concept (1/2) - The Linear Regime

- Lossy Photonic Coupler
 - Two identical waveguides (same phase constant β_0)
 - Top waveguide has saturable losses (non-linear).
 - Bottom waveguide is lossless (linear).
 - Two port configuration.
 - Length = Coupling length L_c
- ☐ Linear Regime (without SA)
 - Super-modes $\beta = \beta_0 j\frac{\alpha}{2} \pm \sqrt{|\kappa|^2 \left(\frac{\alpha}{2}\right)^2}$ Exceptional Point at $\frac{\alpha}{2|\kappa|} = 1$.

 - When $\alpha/2|\kappa| > 1$ one supermode is lossy and the other is lossless (asymptotically).
 - The lossy supermode vanishes very fast: Light remains in the lossless waveguide.

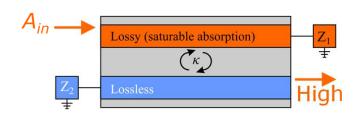


Chatzidimitriou et al., JOSA B 35, 1525-1535, 2018

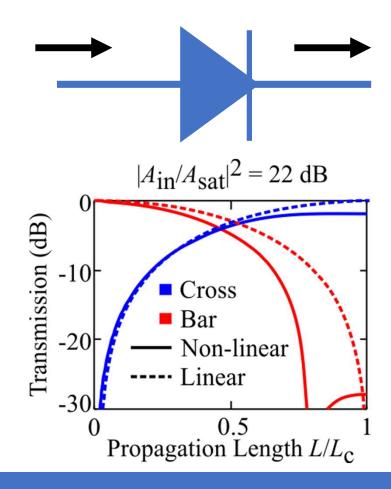
Concept (2/2) – The Non-linear (SA) Regime

$$\alpha \to \frac{\alpha}{1 + |A_1|^2/|A_{\text{sat}}|^2}$$

Assume that for $|A_1| \ll |A_{\text{sat}}| \to \frac{\alpha}{2|\kappa|} \gg 1$ and half-duplex operation.



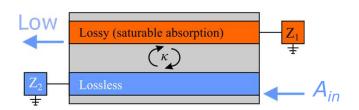
- ☐ High-power excitation **from the lossy (SA) waveguide**:
 - **High overlap** with the non-linear waveguide.
 - Due to SA: $\alpha \to 0$, $\alpha/2|\kappa| < 1$. **Below EP**.
 - Light can couple to opposite waveguide (forward).



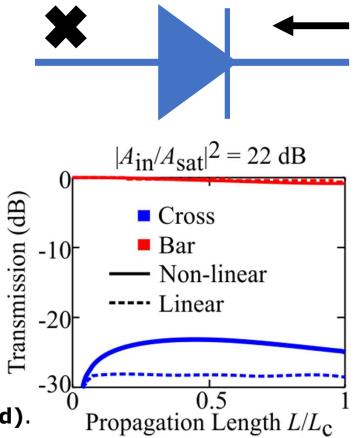
Concept (2/2) – The Non-linear (SA) Regime

$$\alpha \rightarrow \frac{\alpha}{1 + |A_1|^2/|A_{\text{sat}}|^2}$$

Assume that for $|A_1| \ll |A_{\text{sat}}| \to \frac{\alpha}{2|\kappa|} \gg 1$ and half-duplex operation.



- ☐ High-power excitation **from the lossless waveguide**:
 - Little overlap with the non-linear waveguide
 - Losses are **not saturated**, $\alpha/2|\kappa| \gg 1$. **Above EP**.
 - Light cannot couple to opposite waveguide (backward).



Concept Results – Coupled Mode Theory

☐ Simple CMT model

$$\frac{\partial}{\partial z} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} -j\beta_0 - \frac{\alpha}{1 + |A_1|^2 / |A_{\text{sat}}|^2} & \kappa \\ -\kappa^* & -j\beta_0 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

$$\frac{L_c}{T_{12}}$$

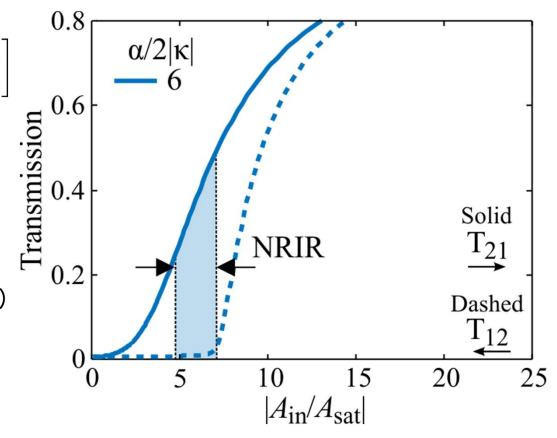
$$\frac{L_c}{T_{21}}$$

$$\frac{L_c}{T_{21}}$$

$$\frac{L_c}{T_{21}}$$

$$\frac{L_c}{T_{21}}$$

- ☐ The Non-Reciprocal Intensity Range (NRIR) is bound by:
 - a) **Forward** transmission > -6 dB.
 - b) **Backward** transmission < -15 dB.



Concept Results – Coupled Mode Theory

☐ Simple CMT model

$$\frac{\partial}{\partial z} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix} = \begin{bmatrix} -j\beta_0 - \frac{\alpha}{1 + |A_1|^2/|A_{\text{sat}}|^2} & \kappa \\ -\kappa^* & -j\beta_0 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

$$\frac{L_c}{T_{12}}$$

$$\frac{L_c}{T_{21}}$$

$$\frac{L_c}{T_{21}}$$

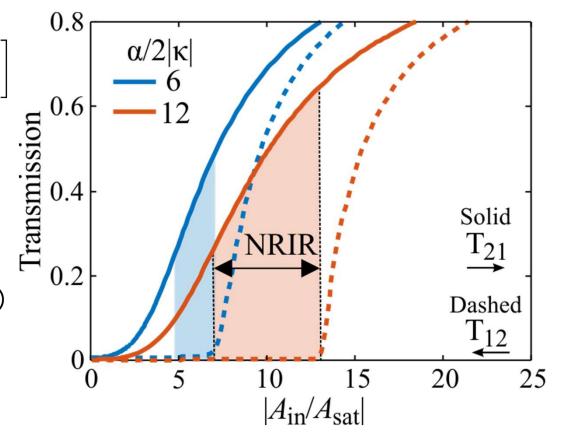
$$\frac{L_c}{T_{21}}$$

$$\frac{L_c}{T_{21}}$$

$$\frac{L_c}{T_{21}}$$

$$\frac{L_c}{T_{21}}$$

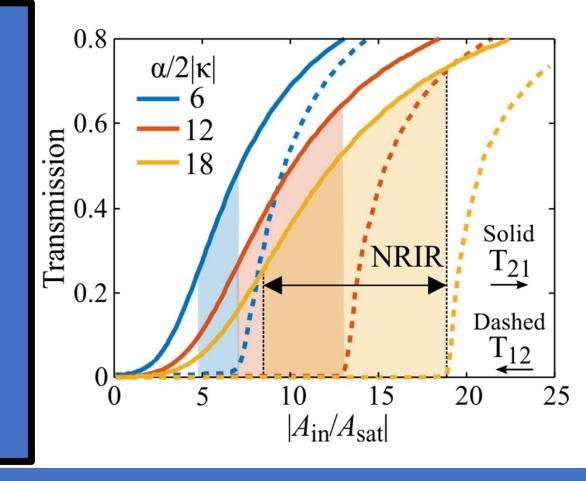
- ☐ The Non-Reciprocal Intensity Range (NRIR) is bound by:
 - a) **Forward** transmission > -6 dB.
 - b) **Backward** transmission < -15 dB.



Concept Results – Coupled Mode Theory

Conclusions from concept model:

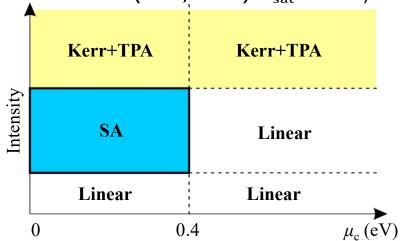
- ✓ Increasing $a/2|\kappa|$ increases NRIR but also increases NL threshold
 - Higher losses are better!
 - Small $|\kappa|$ leads to large devices
- Ideal performance (high transmission and/or perfect isolation) is inherently prohibited
 - A compromise must be made:
 - Narrow NRIR or high NL threshold
- At low and at very high powers the device is again reciprocal

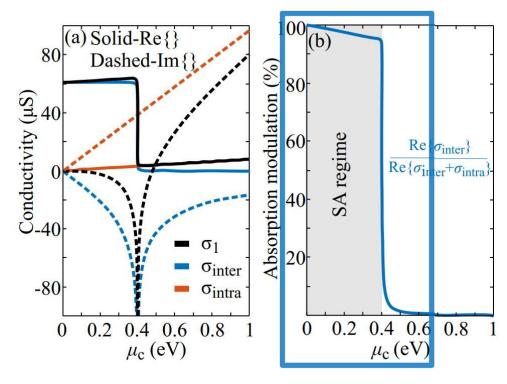


Physical implementation with graphene (1/3)

☐ Graphene monolayer characteristics at 1550 nm

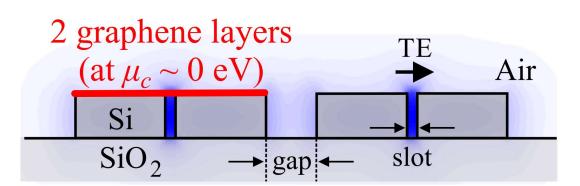
- Linear conductivity $\sigma_1 = \sigma_{\text{intra}} + \sigma_{\text{inter}}$.
- Saturation of the interband conductivity.
- $|\mu_c| < 0.4 \text{ eV}$, ideally **totally saturable.**
- SA has lower power threshold than other third order effects (TPA, Kerr). $I_{\text{sat}} \sim 1 \text{ MW/cm}^2$





Physical implementation with graphene (3/3)

- ☐ Pair of identical **silicon slot waveguides**.
 - Left waveguide overlaid with two graphene monolayers
 - Graphene is **unbiased** $\mu_c = 0$ eV, so that $\sigma \approx \sigma_{\rm inter} \approx 122 \ \mu S$
- ☐ The dimensions chosen ensure that:
 - Field is mainly guided in the slot area:
 high confinement.
 - TE polarization parallel to graphene:
 high interaction.



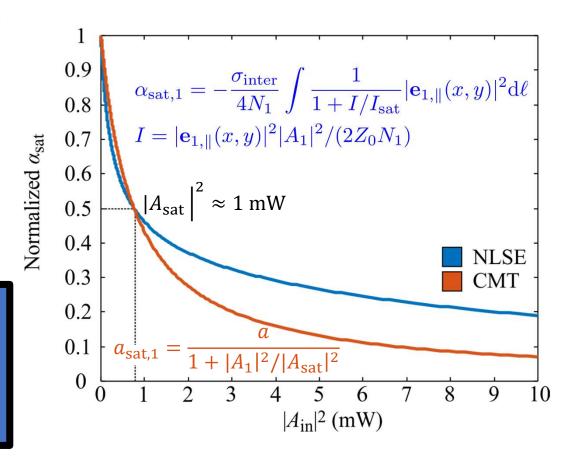
- Waveguide dimensions:
 - Height = 180 nm
 - Width = 360 nm
 - Slot = 40 nm
 - Gap = 640 nm
- □ Parameters
 - Coupling length $L_c = 0.5\pi/|\kappa| = 800 \,\mu\text{m}$
 - Unsaturated losses $\alpha = 0.42 \, \mathrm{dB/\mu m}$

CMT parameter

 $\alpha/2|\kappa| \approx 12$

$$\frac{\partial A_1}{\partial z} = \alpha_{\text{sat},1}(|A_1|^2)A_1 + \alpha_{\text{nsat},1}A_1 + i\kappa A_2,$$
$$\frac{\partial A_2}{\partial z} = \alpha_{\text{nsat},2}A_2 + i\kappa A_1,$$

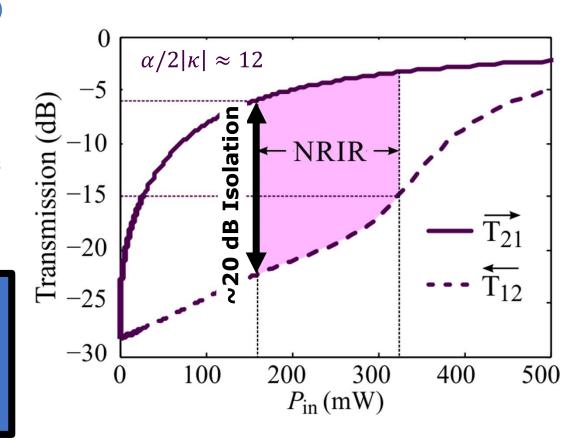
- Graphene saturation intensity $I_{\text{sat}} = 1 \text{ MW/cm}^2$
- Non-saturable losses $a_{nsat,i} = 0$
- Coupling coefficient $\kappa = \pi/2L_c$
- Normalization constant N_i
 - Each equation is derived for a specific waveguide/mode (uncoupled) and then coupled heuristically
 - Approximation stands due to weak coupling



$$\frac{\partial A_1}{\partial z} = \alpha_{\text{sat},1}(|A_1|^2)A_1 + \alpha_{\text{nsat},1}A_1 + i\kappa A_2,$$

$$\frac{\partial A_2}{\partial z} = \alpha_{\text{nsat},2}A_2 + i\kappa A_1,$$

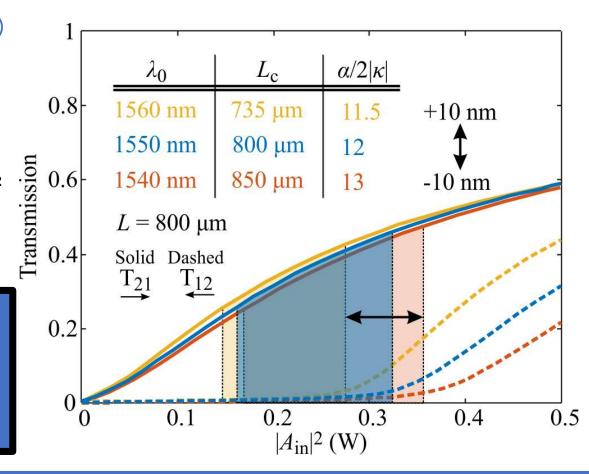
- Graphene saturation intensity $I_{\text{sat}} = 1 \text{ MW/cm}^2$
- Non-saturable losses $a_{\text{nsat},i} = 0$
- Coupling coefficient $\kappa = \pi/2L_c$
- Normalization constant N_i
 - Each equation is derived for a specific waveguide/mode (uncoupled) and then coupled heuristically
 - Approximation stands due to weak coupling



$$\frac{\partial A_1}{\partial z} = \alpha_{\text{sat},1}(|A_1|^2)A_1 + \alpha_{\text{nsat},1}A_1 + i\kappa A_2,$$

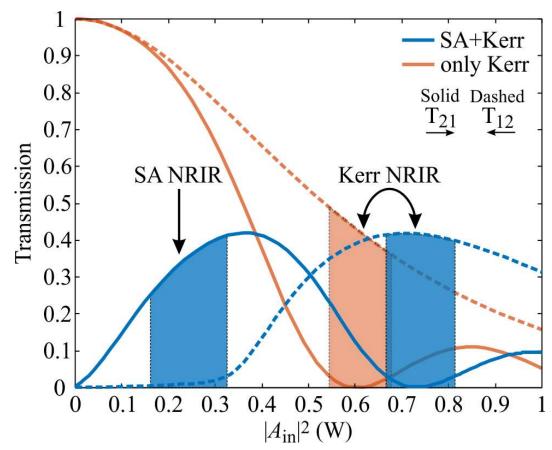
$$\frac{\partial A_2}{\partial z} = \alpha_{\text{nsat},2}A_2 + i\kappa A_1,$$

- Graphene saturation intensity $I_{\text{sat}} = 1 \text{ MW/cm}^2$
- Non-saturable losses $a_{\text{nsat},i} = 0$
- Coupling coefficient $\kappa = \pi/2L_c$
- Normalization constant N_i
 - Each equation is derived for a specific waveguide/mode (uncoupled) and then coupled heuristically
 - Approximation stands due to weak coupling



$$\begin{split} \frac{\partial A_1}{\partial z} &= \alpha_{\text{sat},1} (|A_1|^2) A_1 + \alpha_{\text{nsat},1} A_1 + i \kappa A_2, \\ \frac{\partial A_2}{\partial z} &= \alpha_{\text{nsat},2} A_2 + i \kappa A_1, \end{split} + i \gamma_{\mathcal{S}} |A_1|^2 A_1 \end{split}$$

- Graphene saturation intensity $I_{\text{sat}} = 1 \text{ MW/cm}^2$
- Non-saturable losses $a_{\text{nsat},i} = 0$
- Coupling coefficient $\kappa = \pi/2L_c$
- Normalization constant N_i
 - Each equation is derived for a specific waveguide/mode (uncoupled) and then coupled heuristically
 - Approximation stands due to weak coupling



Validating coupled NLSE

□ Beam Propagation Method (BPM)

Numerical step-wise propagation of an input excitation along a slowly varying waveguide

- √ Frequency-domain (CW) method
- ✓ Cross-section (xy plane): Hybrid higher-order vector/nodal finite-elements (FEM)
- ✓ z-propagation: Finite-difference Crank-Nicolson stepping scheme

Non-linear BPM

- Material EM properties (n for bulk materials and σ for sheet materials) depend on E-field intensity
- Graphene SA: $\Delta \sigma(x, y, z) = -\sigma_{1,inter}(x, y) \cdot I_n/(1 + I_n)$
 - Normalized intensity: $I_n = \left| \vec{E}_{||}(x, y, z) \right|^2 / (2Z_0 I_{\text{sat}})$
- In-step iterations for stability (2-3 are enough)



Validating coupled NLSE

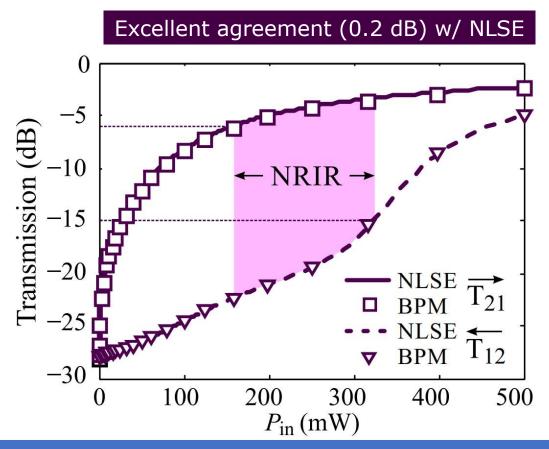
□ Beam Propagation Method (BPM)

Numerical step-wise propagation of an input excitation along a slowly varying waveguide

- √ Frequency-domain (CW) method
- ✓ Cross-section (xy plane): Hybrid higher-order vector/nodal finite-elements (FEM)
- ✓ z-propagation: Finite-difference Crank-Nicolson stepping scheme

Non-linear BPM

- Material EM properties (n for bulk materials and σ for sheet materials) depend on E-field intensity
- Graphene SA: $\Delta \sigma(x, y, z) = -\sigma_{1,inter}(x, y) \cdot I_n/(1 + I_n)$
 - Normalized intensity: $I_n = \left| \vec{E}_{||}(x, y, z) \right|^2 / (2Z_0 I_{\text{sat}})$
- In-step iterations for stability (2-3 are enough)



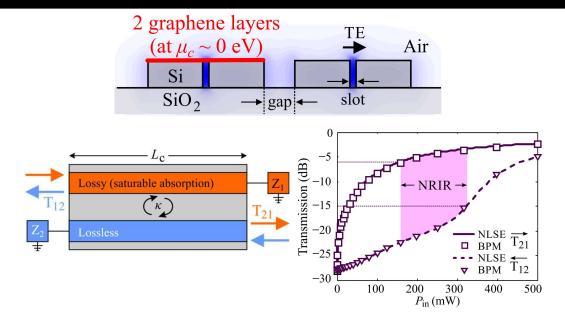
Summary and Conclusions

To summarize:

- ☐ Studied the **breaking of reciprocity** by utilizing EPs and SA.
- ☐ Proposed a physical implementation using a **silicon slot waveguide** (SOI platform) and **graphene**

Conclusions:

- □ SA combined with EPs as an alternative to the Kerr effect.
 - Lower power threshold than the Kerr effect.
 - Compatible with standard integration techniques.
 - Bandwidth is limited mainly by waveguide coupling!



Operational Programme Human Resources Development, Education and Lifelong Learning

Co-financed by Greece and the European Union